Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720366

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Receptores de Superfície Celular , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Seguimentos , Prognóstico , Adulto , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Modelos de Riscos Proporcionais
2.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695252

RESUMO

Tumor­associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor­promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage­based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM­targeting therapeutic strategies and discussed the obstacles and perspectives of TAM­targeting therapies for cancers.


Assuntos
Progressão da Doença , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/imunologia , Animais , Terapia de Alvo Molecular/métodos
3.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743074

RESUMO

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Assuntos
Codonopsis , Fenótipo , Microambiente Tumoral , Macrófagos Associados a Tumor , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Glicopeptídeos/metabolismo , Glicopeptídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologia
4.
Mol Cancer ; 23(1): 92, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715072

RESUMO

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Imunoterapia/métodos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
5.
J Cancer Res Clin Oncol ; 150(5): 238, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713256

RESUMO

BACKGROUND: Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS: We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS: TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.


Assuntos
Neoplasias , Evasão Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Evasão Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Imunoterapia/métodos
6.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714539

RESUMO

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Assuntos
Hexoquinase , Neuroblastoma , Macrófagos Associados a Tumor , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Hexoquinase/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CXC/metabolismo , Animais , Microambiente Tumoral/imunologia
7.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703051

RESUMO

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Assuntos
Linfócitos do Interstício Tumoral , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos Intraepiteliais/imunologia , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Tolerância Imunológica , Animais , Macrófagos Associados a Tumor/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Mieloides/imunologia
8.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690738

RESUMO

Targeting tumor-associated macrophages (TAMs) is an emerging approach being tested in multiple clinical trials. TAMs, depending on their differentiation state, can exhibit pro- or antitumorigenic functions. For example, the M2-like phenotype represents a protumoral state that can stimulate tumor growth, angiogenesis, metastasis, therapy resistance, and immune evasion by expressing immune checkpoint proteins. In this issue of the JCI, Vaccaro and colleagues utilized an innovative drug screen approach to demonstrate that targeting driver oncogenic signaling pathways concurrently with anti-CD47 sensitizes tumor cells, causing them to undergo macrophage-induced phagocytosis. The combination treatment altered expression of molecules on the tumor cells that typically limit phagocytosis. It also reprogrammed macrophages to an M1-like antitumor state. Moreover, the approach was generalizable to tumor cells with different oncogenic pathways, opening the door to precision oncology-based rationale combination therapies that have the potential to improve outcomes for patients with oncogene-driven lung cancers and likely other cancer types.


Assuntos
Antígeno CD47 , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Antígeno CD47/metabolismo , Antígeno CD47/antagonistas & inibidores , Animais , Fagocitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
9.
Pathol Oncol Res ; 30: 1611586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689823

RESUMO

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Assuntos
Lipossomos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata , Macrófagos Associados a Tumor , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Camundongos , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Modelos Animais de Doenças , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selectina E/metabolismo , Microambiente Tumoral/imunologia
10.
Cancer Immunol Immunother ; 73(6): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693304

RESUMO

In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.


Assuntos
Matriz Extracelular , Neoplasias , Macrófagos Associados a Tumor , Humanos , Matriz Extracelular/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo
11.
Aging (Albany NY) ; 16(8): 6809-6838, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663915

RESUMO

Macrophages, as essential components of the tumor immune microenvironment (TIME), could promote growth and invasion in many cancers. However, the role of macrophages in tumor microenvironment (TME) and immunotherapy in PCa is largely unexplored at present. Here, we investigated the roles of macrophage-related genes in molecular stratification, prognosis, TME, and immunotherapeutic response in PCa. Public databases provided single-cell RNA sequencing (scRNA-seq) and bulk RNAseq data. Using the Seurat R package, scRNA-seq data was processed and macrophage clusters were identified automatically and manually. Using the CellChat R package, intercellular communication analysis revealed that tumor-associated macrophages (TAMs) interact with other cells in the PCa TME primarily through MIF - (CD74+CXCR4) and MIF - (CD74+CD44) ligand-receptor pairs. We constructed coexpression networks of macrophages using the WGCNA to identify macrophage-related genes. Using the R package ConsensusClusterPlus, unsupervised hierarchical clustering analysis identified two distinct macrophage-associated subtypes, which have significantly different pathway activation status, TIME, and immunotherapeutic efficacy. Next, an 8-gene macrophage-related risk signature (MRS) was established through the LASSO Cox regression analysis with 10-fold cross-validation, and the performance of the MRS was validated in eight external PCa cohorts. The high-risk group had more active immune-related functions, more infiltrating immune cells, higher HLA and immune checkpoint gene expression, higher immune scores, and lower TIDE scores. Finally, the NCF4 gene has been identified as the hub gene in MRS using the "mgeneSim" function.


Assuntos
Antígenos de Histocompatibilidade Classe II , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Neoplasias da Próstata , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Regulação Neoplásica da Expressão Gênica , Prognóstico , Imunoterapia , Redes Reguladoras de Genes , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo
12.
Sci Rep ; 14(1): 9276, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653742

RESUMO

Tumor-associated macrophages (TAMs) are a specific subset of macrophages that reside inside the tumor microenvironment. The dynamic interplay between TAMs and tumor cells plays a crucial role in the treatment response and prognosis of lung adenocarcinoma (LUAD). The study aimed to examine the association between TAMs and LUAD to advance the development of targeted strategies and immunotherapeutic approaches for treating this type of lung cancer. The study employed single-cell mRNA sequencing data to characterize the immune cell composition of LUAD and delineate distinct subpopulations of TAMs. The "BayesPrism" and "Seurat" R packages were employed to examine the association between these subgroups and immunotherapy and clinical features to identify novel immunotherapy biomarkers. Furthermore, a predictive signature was generated to forecast patient prognosis by examining the gene expression profile of immunotherapy-associated TAMs subsets and using 104 machine-learning techniques. A comprehensive investigation has shown the existence of a hitherto unidentified subgroup of TAMs known as RGS1 + TAMs, which has been found to have a strong correlation with the efficacy of immunotherapy and the occurrence of tumor metastasis in LUAD patients. CD83 was identified CD83 as a distinct biomarker for the expression of RGS1 + TAMs, showcasing its potential utility as an indicator for immunotherapeutic interventions. Furthermore, the prognostic capacity of the RTMscore signature, encompassing three specific mRNA (NR4A2, MMP14, and NPC2), demonstrated enhanced robustness when contrasted against the comprehensive collection of 104 features outlined in the published study. CD83 has potential as an immunotherapeutic biomarker. Meanwhile, The RTMscore signature established in the present study might be beneficial for survival prognostication.


Assuntos
Adenocarcinoma de Pulmão , Imunoterapia , Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia/métodos , Prognóstico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Antígenos CD/metabolismo , Antígenos CD/genética
14.
Cancer Cell ; 42(5): 747-758, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670090

RESUMO

Cancer is a progressive disease that can develop and evolve over decades, with inflammation playing a central role at each of its stages, from tumor initiation to metastasis. In this context, macrophages represent well-established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages, inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-associated macrophage biology, we propose a new framework to better contextualize their significance in the inflammatory processes that precede and result from the onset of cancer and shape its evolution.


Assuntos
Inflamação , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Inflamação/imunologia , Inflamação/patologia , Microambiente Tumoral/imunologia , Macrófagos/imunologia
15.
J Med Chem ; 67(8): 6854-6879, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38593344

RESUMO

Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.


Assuntos
Neoplasias Colorretais , Imunoterapia , Receptor de Fator Estimulador de Colônias de Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Animais , Humanos , Camundongos , Imunoterapia/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Feminino , Descoberta de Drogas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Masculino , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
16.
BMC Cancer ; 24(1): 534, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671413

RESUMO

BACKGROUND: While there is an understanding of the association between the expression of Porphyromonas gingivalis (P. gingivalis) and prognosis of oral squamous cell carcinoma (OSCC), significance specially to address the relevance between different immunohistochemical intensities of P. gingivalis and tumor-associated macrophages (TAMs) in OSCC tissue and related clinicopathologic characteristics has not been well investigated. The present study aimed to investigate the pathological features related to M2-TAM in P. gingivalis-infected OSCC and ascertain its clinical relevance with patients' prognosis. METHODS: A prospective cohort study was designed to comparatively analyze 200 patients from June 2008 to June 2020. Bioinformatics analyses were implemented to identify DOK3 as a key molecule and to appraise immunocyte infiltration using Gene Expression Omnibus and The Cancer Genome Atlas databases. Immunohistochemical evaluation was performed to analyze the association between the expression levels of P. gingivalis, DOK3, and M2-TAM and clinicopathological variables using Fisher's exact test or Pearson's chi-square test. Cox analysis was used to calculate hazard ratios (HR) with corresponding 95% confidence interval (CI) for various clinicopathological features. The Kaplan-Meier approach and log-rank test were used to plot the survival curves. RESULTS: The expression level of P. gingivalis was positively associated with DOK3 and M2-TAMs expression level (P < 0.001). Parameters, including body mass index, clinical stage, recurrence, tumor differentiation, and P. gingivalis, DOK3, and M2-TAM immunoexpression levels, affected the prognosis of patients with OSCC (all P < 0.05). In addition, P. gingivalis (HR = 1.674, 95%CI 1.216-4.142, P = 0.012), DOK3 (HR = 1.881, 95%CI 1.433-3.457, P = 0.042), and M2-TAM (HR = 1.649, 95%CI 0.824-3.082, P = 0.034) were significantly associated with the 10-year cumulative survival rate. CONCLUSIONS: Elevated expression of P. gingivalis and DOK3 indicates M2-TAM infiltration and unfavorable prognosis of OSCC, and could be considered as three novel independent risk factors for predicting the prognosis of OSCC.


Assuntos
Infecções por Bacteroidaceae , Neoplasias Bucais , Porphyromonas gingivalis , Macrófagos Associados a Tumor , Humanos , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/imunologia , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , China/epidemiologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Estudos Prospectivos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Adulto , Biomarcadores Tumorais/metabolismo
17.
Front Immunol ; 15: 1379853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650937

RESUMO

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.


Assuntos
Fenótipo , Animais , Camundongos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Proliferação de Células , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Apoptose , Fagocitose , Movimento Celular/imunologia
18.
Cell Rep ; 43(4): 114088, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602878

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features an immunosuppressive tumor microenvironment (TME) that resists immunotherapy. Tumor-associated macrophages, abundant in the TME, modulate T cell responses. Bone marrow stromal antigen 2-positive (BST2+) macrophages increase in KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse models during PDAC progression. However, their role in PDAC remains elusive. Our findings reveal a negative correlation between BST2+ macrophage levels and PDAC patient prognosis. Moreover, an increased ratio of exhausted CD8+ T cells is observed in tumors with up-regulated BST2+ macrophages. Mechanistically, BST2+ macrophages secrete CXCL7 through the ERK pathway and bind with CXCR2 to activate the AKT/mTOR pathway, promoting CD8+ T cell exhaustion. The combined blockade of CXCL7 and programmed death-ligand 1 successfully decelerates tumor growth. Additionally, cGAS-STING pathway activation in macrophages induces interferon (IFN)α synthesis leading to BST2 overexpression in the PDAC TME. This study provides insights into IFNα-induced BST2+ macrophages driving an immune-suppressive TME through ERK-CXCL7 signaling to regulate CD8+ T cell exhaustion in PDAC.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Interferon-alfa , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Tolerância Imunológica , Interferon-alfa/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
19.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674108

RESUMO

Early evidence suggests a strong impact of tumour-infiltrating lymphocytes (TILs) on both the prognosis and clinical behaviour of ovarian cancer. Proven associations, however, have not yet translated to successful immunotherapies and further work in the field is urgently needed. We aimed to analyse the tumour microenvironment of a well-characterised cohort of ovarian cancer samples. Tumour markers were selected owing to their comparative underrepresentation in the current literature. Paraffin-embedded, formalin-fixed tumour tissue blocks of 138 patients representative of the population and including early stage disease were identified, stained for CD3, CD20, CD68 and CD163 and analysed for both the stromal and intertumoral components. Data were statistically analysed in relation to clinical details, histological subtype, borderline vs. malignant status, survival and management received. Mean stromal CD3, total CD3 count, mean stromal CD20 and total CD20 count all correlated negatively with survival. Malignant ovarian tumours consistently demonstrated significantly higher infiltration of all analysed immune cells than borderline tumours. Assessment of the stromal compartment produced a considerably higher proportion of significant results when compared to the intra-tumoural infiltrates. Customary assessment of solely intra-tumoural cells in advanced stage disease patients undergoing primary debulking surgery should be challenged, with recommendations for future scoring systems provided.


Assuntos
Carcinoma Epitelial do Ovário , Linfócitos do Interstício Tumoral , Neoplasias Ovarianas , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Feminino , Prognóstico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Pessoa de Meia-Idade , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Microambiente Tumoral/imunologia , Idoso , Adulto , Biomarcadores Tumorais , Antígenos CD/metabolismo , Idoso de 80 Anos ou mais
20.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626338

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Assuntos
Aminopiridinas , Neoplasias Encefálicas , Glioblastoma , Microglia , Receptores de Antígenos Quiméricos , Glioblastoma/terapia , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Animais , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Lipossomos/química , Pirróis/química , Pirróis/farmacologia , Imunoterapia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Imunoterapia Adotiva , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA